HIF-1α promotes ZEB1 expression and EMT in a human bladder cancer lung metastasis animal model

نویسندگان

  • Jianning Zhu
  • Zhixin Huang
  • Mengzhao Zhang
  • Weiyi Wang
  • Hua Liang
  • Jin Zeng
  • Kaijie Wu
  • Xinyang Wang
  • Jer-Tsong Hsieh
  • Peng Guo
  • Jinhai Fan
چکیده

Lung is one of the most common sites for bladder cancer to metastasize. Although the involvement of the epithelial-to-mesenchymal transition (EMT) in bladder cancer progression has been established, the mechanism of EMT induction remains unclear. In order to investigate this, T24-parental (P) and T24-lung (L) bladder cancer cells were obtained from primary tumors and lung metastatic sites of an animal model with orthotopic spontaneous metastatic bladder cancer, according to a protocol previously described. Compared with T24-P cells, mesenchymal-like T24-L cells exhibited an increased ability in tumor invasion and metastasis, as well as an increased expression of hypoxia-inducible factor (HIF)-1α, zinc finger E-box-binding homeobox 1 (ZEB1), vimentin and N-cadherin and lower level of cytokeratin 18 were observed. Mechanistically, it was identified that HIF-1α increases ZEB1 expression and subsequently regulates the expression of EMT-related genes in both HIF-1α knocking down by siRNA and gain-in HIF-1α by hypoxia culture cell models. In addition, the expression of HIF-1α and ZEB1 in bladder cancer tissues were increased compared with normal bladder epithelial tissues, as well as significantly increased in the high-grade, invasive and metastatic bladder cancer tissues compared with low-grade, superficial and non-metastatic bladder cancer tissues by using immune-histochemical staining assay. Notably, the protein level of HIF-1α was positively associated with that of ZEB1 in bladder cancer tissues. Results from the present study indicate that HIF-1α promotes ZEB1 expression and EMT in the T24-L human bladder cancer lung metastasis animal model, suggesting that HIF-1α serves an important function in the metastasis of bladder cancer, and HIF-1α and ZEB1 may be potential targets for inhibiting bladder metastasis in the future.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

HIF-1α Promotes Epithelial-Mesenchymal Transition and Metastasis through Direct Regulation of ZEB1 in Colorectal Cancer

It is well recognized that hypoxia-inducible factor 1 alpha (HIF-1α) is involved in cancer metastasis, chemotherapy and poor prognosis. We previously found that deferoxamine, a hypoxia-mimetic agent, induces epithelial-mesenchymal transition (EMT) in colorectal cancer. Therefore, here we explored a new molecular mechanism for HIF-1α contributing to EMT and cancer metastasis through binding to Z...

متن کامل

Long Non-coding RNA ZEB1-AS1 Promotes Tumorigenesis and Metastasis in Colorectal Cancer

Emerging evidence implicates that a large fraction of human genome was transcribed but the transcripts known as long non coding RNA are not translated into proteins. They are contributing in different cellular processes, including cellular proliferation and apoptosis. LncRNAs were found to play critical roles in many diseases and act as key regulators in malignancies. In this study, we investig...

متن کامل

Analysis of epithelial mesenchymal transition markers in breast cancer cells in response to stromal cell-derived factor 1

Introduction: Metastasis is the main cause of cancer death; however, the underlying mechanisms of metastasis are largely unknown. The chemokine of stromal cell-derived factor 1 (SDF1) and the process of epithelial mesenchymal transition (EMT), both have been declared as important factors to promote cancer metastasis; however, Conspicuously, the relation between them has not been recognized well...

متن کامل

Daxx inhibits hypoxia-induced lung cancer cell metastasis by suppressing the HIF-1α/HDAC1/Slug axis

Hypoxia is a major driving force of cancer invasion and metastasis. Here we show that death domain-associated protein (Daxx) acts to negatively regulate hypoxia-induced cell dissemination and invasion by inhibiting the HIF-1α/HDAC1/Slug pathway. Daxx directly binds to the DNA-binding domain of Slug, impeding histone deacetylase 1 (HDAC1) recruitment and antagonizing Slug E-box binding. This, in...

متن کامل

TGF-β-induced upregulation of malat1 promotes bladder cancer metastasis by associating with suz12.

PURPOSE TGF-β promotes tumor invasion and metastasis by inducing an epithelial-mesenchymal transition (EMT). However, the underlying mechanisms causing this are not entirely clear. Long noncoding RNAs (lncRNA) have been shown to play important regulatory roles in cancer progression. The lncRNA malat1 (metastasis associated lung adenocarcinoma transcript 1) is a critical regulator of the metasta...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 15  شماره 

صفحات  -

تاریخ انتشار 2018